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Abstract

In this paper we elaborate on the potential of the lmer function from the lme4 package
in R for item response (IRT) modeling. In line with the package, an IRT framework is
described based on generalized linear mixed modeling. The aspects of the framework refer
to (a) the kind of covariates – their mode (person, item, person-by-item), and their being
external vs. internal to responses, and (b) the kind of effects the covariates have – fixed
vs. random, and if random, the mode across which the effects are random (persons, items).
Based on this framework, three broad categories of models are described: Item covariate
models, person covariate models, and person-by-item covariate models, and within each
category three types of more specific models are discussed. The models in question are
explained and the associated lmer code is given. Examples of models are the linear
logistic test model with an error term, differential item functioning models, and local item
dependency models. Because the lme4 package is for univariate generalized linear mixed
models, neither the two-parameter, and three-parameter models, nor the item response
models for polytomous response data, can be estimated with the lmer function.

Keywords: generalized linear mixed models, item response models, multidimensional IRT,
item covariates, person covariates.

1. Introduction

The number of software packages for IRT models is clearly on the rise, and an interesting
new development is the tendency to migrate onto general-interest platforms such as R (R

http://www.jstatsoft.org/
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Development Core Team 2010). For example, in 2007 the Journal of Statistical Software
published a special issue on psychometrics in R (de Leeuw and Mair 2007). Software packages
for IRT can be categorized in many ways, among others using the following three major
categories: Model-oriented packages, extended packages, and general statistical packages.

1. Model-oriented packages concentrate on sets of related item response models, such as
the one-parameter (1PM), two-parameter (2PM), and three-parameter (3PM) models,
of the logistic or normal-ogive type, and models for ordered-category data, such as the
partial credit model (PCM) and the graded response model (GRM), and a variety of
other models. Some packages concentrate on a broader family, such as the Rasch family.
Examples of packages in R of this first type are eRm (Mair and Hatzinger 2007), mlirt
(Fox 2007), ltm (Rizopoulos 2006). They differ in the estimation approach used, such
as conditional maximum likelihood (eRm), marginal maximum likelihood with Gauss-
Hermite quadrature (ltm), and Markov chain Monte Carlo (MCMC, mlirt).

2. Extended packages stem from a broad category of other than IRT models, such as
structural equation models (SEM), multilevel models, and mixture models, and are
extended so that they can be used also for IRT models. Examples are LISCOMP
(Muthén 1987) and its successor Mplus (Muthén and Muthén 1998), HLM (Raudenbush
et al. 2004), and Latent GOLD (Vermunt and Magidson 2005). Also apart from IRT,
they have been developed into very general and flexible model estimation tools.

3. General statistical packages have their origin in generalized linear and nonlinear mixed
models. Examples are lme4 for generalized linear mixed models (Bates et al. 2011), SAS
PROC NLMIXED (SAS Institute Inc. 2008) for nonlinear (and generalized linear) mixed
models, and gllamm (Rabe-Hesketh et al. 2004) for the same kind of framework, but
extended, among others elements, with SEM possibilities.

For the third category, it is not always clear what the full potential is for item response
modeling, because of the broad purpose of the approach. It is therefore worth specifying the
potential explicitly. For SAS PROC NLMIXED, suchlike descriptions can be found in De Boeck
and Wilson (2004) and in Sheu et al. (2005).

For lme4, Doran et al. (2007) have published an article on the multilevel Rasch model, and
a special issue of the Journal of Memory and Language (Forster and Masson 2008) contains
several articles with useful information, although not in an explicit IRT context. The aim of
the present paper is to lay out in an explicit way indeed the possibilities for item response
modeling with the lmer function, because the generalized linear mixed model approach (as
well as the nonlinear mixed model approach) extends the possibilities of IRT modeling, and
because this framework links psychometrics to broader domains of statistical modeling.

The models are generalized linear models because they allow for a transformation of the
expected values of the data in order to rely on a linear formulation, and they are mixed
because one or more weights in the linear component are random variables (McCulloch and
Searle 2001). The linear mixed model (LMM) is a special case of the broader category of
generalized linear mixed models (GLMM).

In Section 2, a brief description will be given of GLMM for the IRT context, how the simplest
item response model fits into the category of GLMM, and how the lmer function to estimate
this IRT model reflects the GLMM structure. In the following sections an example dataset
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will be described (Section 3.1), a framework for item response models of the GLMM type
will be given (Section 4), three broad categories of such models will be presented and their
estimation with lmer will be explained (Sections 5 to 7), model comparison and testing will
be discussed (Section 8), and a comparison with other R packages for item response models
will be made (Section 9), followed by a discussion and conclusions (Section 10).

2. Generalized linear mixed models

The models will be described for an item response context, with persons as clusters, items
for the repeated observations, and binary responses. The data are denoted as Ypi = 0, 1, with
p = 1, . . . , P as an index for persons, and i = 1, . . . , I as an index for items. The use of
lmer for IRT is limited to binary data and ordered-category data that can be decomposed
into binary data, such as for the continuation ratio model (Tutz 1990). For a more complete
discussion of GLMM for IRT, see (Rijmen et al. 2003).

2.1. GLMM components

Following a GLMM, data can be understood as generated in a sequence of three steps:

Linear component: For each pair of a person p and an item i, (p, i), a linear combination
of the predictors determines the linear component value. This value is denoted here as
ηpi.

Linking component: The resulting ηpi is mapped into the interval [0, 1] based on a link
function, yielding a probability πpi, the expected value of Ypi.

Random component: Probability πpi is the parameter of the Bernoulli / binomial distribu-
tion on the basis of which a binary observation is generated for the pair (p, i), denoted
as Ypi ∈ 0, 1.

Each of these three will now be explained in more detail, and in the reverse order.

The random component is the Bernoulli distribution. Probability πpi, is the parameter of
the Bernoulli distribution: Ypi ∼ Bernoulli(πpi). The Bernoulli distribution is the binomial
distribution with one observation (n = 1). It is typical for IRT data to have only one
observation per pair of a person and an item, so that

Ypi ∼ binomial(1, πpi). (1)

The linking component maps the expected value of Ypi, which is πpi for the Bernoulli distri-
bution, on the real line from −∞ to +∞ through a link function:

ηpi = flink(πpi). (2)

The link function is commonly chosen to be the logit function, or ηpi = ln(πpi/(1−πpi)). The
logit link is the natural link for the Bernoulli / binomial distribution. It leads to logistic IRT
models. An alternative for the logit link is the probit link, which is based on the cumulative
standard normal distribution, also called the normal ogive. The inverse of the cumulative
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probability function yields the value of the probit link function. The two links lead to dif-
ferent scales. The parameters in a probit model are scaled relative to the standard normal
distribution, while in a logistic model they are scaled relative to the standard logistic distri-
bution. Because the logistic distribution is approached quite well by a normal distribution
with a standard deviation of 1.7, the probit scale can be transformed to the logit scale by
multiplication with the well-known D = 1.7.

The linear component is a linear combination of predictors. In the statistical literature,
often the term “covariate” is used instead of “predictor”, and the weights are called “effects”.
Expanding and developing the linear component in different ways is an important part of this
paper, so we will explain in detail its structure for the simplest IRT model, the Rasch model.

2.2. Linear component of the Rasch model

The Rasch model uses I + 1 item covariates: I item indicators plus a constant 1 for all items.
As a result, the I × (I + 1) matrix X of item covariates is the concatenation of a 1-vector and
an I×I identity matrix. The 1-vector has a random effect, which is often called the ability or
latent trait in an IRT model, while the effects of the covariates from the identity matrix are
fixed, one per item, corresponding to the so-called difficulty parameters. The logistic version
of the model is known as the Rasch model or one-parameter logistic (1PL) model. In terms
of item predictors and their effects, the model can be formulated as follows:

ηpi = θpXi0 +
K∑
k=1

βiXik, (3)

with Xi0 = 1 for all items; Xik = 1 if i = k(k = 1, . . . ,K; index k has the same range as
index i), and 0 otherwise; and θp ∼ N(0, σ2θ).

The model in (3) can also be written in a simpler form: ηpi = θp+βi. It follows from (3) that
the 1PL and its normal-ogive equivalent are random intercept models. Note that the plus
sign in (3) implies that the βi should be interpreted as item easiness instead of item difficulty.
This is in conformity with the lmer notation, but not with common psychometric practice,
where a minus sign is used and the βi is interpreted as the item difficulty.

As a general principle, when viewing IRT models from a GLMM perspective, all forms of
measurement rely on covariate effects. For example, in most models, the latent traits are
random effects, and the item difficulties are fixed effects.

2.3. The lmer function

In the lmer function, the random component for the case of the binomial distribution is
specified as ir ~ ..., family = binomial, as illustrated in Figure 1. The first part, ir

~ ..., tells us that the binary variable containing item responses, called ir, is distributed
with an expected value determined by the linear component (symbolized here by the dots).
The last part, family = binomial, indicates the binomial nature of the distribution. This
specification is independent of the number of observations per pair (p, i), but, of course, in
the common IRT case, there is just one observation.

The linking component in the case of binomial data can be specified either as the "logit"

or "probit" argument of family = binomial() (Figure 1). Because the logistic link is the
default, the specification may be omitted for logistic models.
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lmer( ir ∼ -1 + item + (1|id), family=binomial (”logit”), data=DataSet )

random linear linking data
component component component set

Figure 1: The three GLMM components for a logit model and the dataset as arguments of
the lmer function.

The linking component in the case of binomial data can be specified either as the “logit” or
“probit”argument of family=binomial( ) (Figure 1). Because the logistic link is the default,
the specification may be omitted for logistic models.

The linear component is specified after ir ~, in the form of an linear expression that represents
the covariates and the kind of effect (fixed or random) they have (Figure 1). The linear
component in Figure 1 is for the Rasch model. It contains fixed effects for the items, indicated
with the term item, and a random effect across persons, indicated with the term (1|id). The
value of the linear component is the expected value of Ypi.

Combining the three components and the dataset label then leads to the following lmer code
for the 1PL model: lmer(ir ~ -1 + item + (1|id), data=DataSet, family="binomial")

(see also Figure 1). The linear component expression -1 + item + (1|id) will be explained
in Section 5. Alternative ways to specify the 1PM model are possible, as will be explained in
the remainder.

3. Data set and format

3.1. Example data set

An example dataset, VerbAgg from De Boeck and Wilson (2004), is included in the lme4
package. It consists of item responses to a self-report questionnaire with a design. The topic
is verbal aggression. There are 24 items, based on four frustrating situations, two of which
where someone else is to be blamed (e.g., “A bus fails to stop for me”), and two of which where
one is self to be blamed (e.g., “I am entering a grocery store when it is about to close”). Each
of these situations is combined with each of three behaviors, cursing, scolding, and shouting,
leading to 4×3 combinations. These 12 combinations are formulated in two modes, a wanting
mode and a doing mode, so that in total there are 24 items. An example is “A bus fails to
stop for me. I would want to curse”. This is an other-to-blame item with a cursing reaction
and a wanting mode. The corresponding doing mode reads as follows: “A bus fails to stop
for me. I would curse”. The response scale has three categories, “yes”, “perhaps”, and “no”.
The first two are coded as 1, the third as 0. Of the 316 respondents 243 are females and 73
are males.

The labels are r2 for the binary response, item for the items, id for the persons, btype for the
behavior type (with levels curse, scold, shout), situ for other-to-blame and self-to-blame
(with levels other, self), mode for the behavioral mode (with levels want, do), and Gender

for the person’s gender (with levels F for men, M for women).

Figure 1: The three GLMM components for a logit model and the dataset as arguments of
the lmer function.

The linear component is specified after ir ~, in the form of an linear expression that represents
the covariates and the kind of effect (fixed or random) they have (Figure 1). The linear
component in Figure 1 is for the Rasch model. It contains fixed effects for the items, indicated
with the term item, and a random effect across persons, indicated with the term (1 | id).
The value of the linear component is the expected value of Ypi.

Combining the three components and the dataset label then leads to the following lmer

code for the 1PL model: lmer(ir ~ -1 + item + (1 | id), data = DataSet, family =

"binomial") (see also Figure 1). The linear component expression -1 + item + (1 | id)

will be explained in Section 5. Alternative ways to specify the 1PM model are possible, as
will be explained in the remainder.

3. Data set and format

3.1. Example data set

An example dataset, VerbAgg from De Boeck and Wilson (2004), is included in the lme4
package. It consists of item responses to a self-report questionnaire with a design. The topic
is verbal aggression. There are 24 items, based on four frustrating situations, two of which
where someone else is to be blamed (e.g., “A bus fails to stop for me”), and two of which where
one is self to be blamed (e.g., “I am entering a grocery store when it is about to close”). Each
of these situations is combined with each of three behaviors, cursing, scolding, and shouting,
leading to 4×3 combinations. These 12 combinations are formulated in two modes, a wanting
mode and a doing mode, so that in total there are 24 items. An example is “A bus fails to
stop for me. I would want to curse”. This is an other-to-blame item with a cursing reaction
and a wanting mode. The corresponding doing mode reads as follows: “A bus fails to stop
for me. I would curse”. The response scale has three categories, “yes”, “perhaps”, and “no”.
The first two are coded as 1, the third as 0. Of the 316 respondents 243 are females and 73
are males.

The labels are r2 for the binary response, item for the items, id for the persons, btype for
the behavior type (with levels "curse", "scold", "shout"), situ for other-to-blame and self-
to-blame (with levels "other", "self"), mode for the behavioral mode (with levels "want",
"do"), and Gender for the person’s gender (with levels "F" for men, "M" for women).

Commonly an IRT dataset with item responses has the form of an array with P rows and
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I columns. However, lmer needs a “long form” for the data to be modeled, with one row
per response and a column length equal to the number of persons times the number of items
(P × I), or 316× 24 in the example. These responses constitute one of the columns (vectors)
in the data frame. At least two other columns must be present, one to identify the person and
the other to identify the item. For richer models, there will be additional covariates whose
values must be repeated on each row associated with the carrier of the covariate value – for
instance, the gender indicator for person p must appear on each row containing a response
from person p. See Section 3.2 for how one can proceed if the data format is wide.

Because there is a row for each single response, the row corresponding to a missing response
should either be removed, or the missing responses must be coded such that a selection for the
analysis is possible. Consequently, missing data will treated as missing at random (MAR).
Neither deletion of cases nor data imputation is needed.

The columns can be of two kinds: Quantitative variables (numeric vectors), and nominal
or qualitative variables (“factors”). Both types can be used for categorical variables. For
example, one can either use the factor btype (with levels "curse", "scold", and "shout"),
or one can define two quantitative binary variables, using either dummy coding, contrast
coding, reference coding, or any other type of coding. The factor format will be used for the
item and person indicators, for the item design factors, and for gender. An extra predictor
variable, Anger, in the same dataset, refers to a trait measure of the person’s anger and is of
the quantitative type.

The default coding of the factors is dummy coding with the first level of each factor as the
reference level. In an IRT context this means that the first item functions as the reference
item, and that all other item parameters are estimated as deviations from the first. All effects
are expressed as deviations from an intercept, unless it is specified that no intercept is used,
as will be explained in Section 5.1. If the intercept is removed, also the effect of the first level
of the first mentioned factor will be estimated, which is the first item parameter estimate for
the factor item if item is mentioned as the first element of the linear component. Alternative
codings for the factors can be chosen.

3.2. Long format

“Wide form” data can be translated to the long format in various ways. We will show how
it can be done with function melt() from the additional package reshape (Wickham 2007),
which we have found a bit easier than the in-built function reshape().

Function melt distinguishes between measured variables and ID variables. One can think
of the former as within-person variables (typically, responses), and of the latter as between-
person variables (such as subject’s ID, sex, age. . . ) The variables in the data frame can be
declared as either measured or ID variables by their names or by their column number. When
variables of both types are explicitly declared, the remaining variables in the data frame
will be omitted from the operation. When only one type (measured or ID) is specified, all
remaining variables are assumed to be of the other type. If nothing is specified, all variables
are treated as measured.

As an example, let us use melt() to transform the data set LSAT included in package ltm

from wide to long form. LSAT contains the responses of 1000 persons to 5 dichotomous items.
These are all measured variables that will be “melted” into a single variable, called by default
value, plus an additional factor, variable – the latter is produced from the variable names
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of the five original variables to indicate the item to which each response corresponds. LSAT

does not contain an ID variable for the persons, which is needed by lmer, so we shall have to
construct one from the row names of the data frame before melting. We will specify explicitly
only the new ID variable because all other variables are measured and none of them will be
dropped. The necessary R code is then

R> library("ltm")

R> data("LSAT")

R> LSAT$person <- rownames(LSAT)

R> library("reshape")

R> LSATlong <- melt(LSAT, id = "person")

Data set LSATlong is in the shape needed by lmer. Each of its rows contains a person ID
variable, an item ID variable, and the response given by the person to that particular item:

person variable value

1 1 Item 1 0

2 2 Item 1 0

3 3 Item 1 0

. . .

4. Common and less common IRT models

An important type of item response models (IRT) belongs to the GLMM category, because
these IRT models are linear models for the logit or probit transformation of the expected values
of a binary variable (i.e., probabilities), and because one or more weights in the resulting
linear model are random variables. Commonly, these random variables are latent traits.
Three important types of models do not belong to the GLMM category. First, models for
ordered categories or nominal categories, with a number of categories larger than two, rely
on multivariate extensions of the GLMM framework (Fahrmeir and Tutz 2001), also called
vector GLMMs (Yee and Wild 1996; Yee 2010). An exception is the continuation ratio model,
which can be formulated as a GLMM (Tutz 1990). Second, the 2PM is not a GLMM because
it relies on products of parameters through the introduction of a discrimination parameter.
Finally, also the 3PM is not a GLMM, not only because it is an extension of the 2PM, but
also because it is a mixture model for the item responses. One mixture component refers to
the guessing responses, and the other to the responses governed by the 2PM.

On the other hand, not just the 1PM or Rasch model remains as a possible model. Instead, a
large variety of models, some of which may be less familiar, do belong to the GLMM category
and can therefore be estimated using lmer. In the following, this variety of models will be
explicated and it will also be explained how to use the lmer function for these models.

In order to explicate these models, a short taxonomy is presented here, based on the kind of
covariates involved and the kind of effects they have. The taxonomy has four dimensions, two
referring to the kind of covariates, and two referring to the kind of effects, so that there are
four dimensions in total:

Mode of the covariates: The covariates can refer to items, to persons, or to pairs of persons
and items.
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External versus internal covariates: An external covariate is external to the item re-
sponses to be modeled. An internal covariate does stem from the responses to be
modeled. Models with internal covariates are sometimes called conditional models in
the statistical literature (Fahrmeir & Tutz, 2001). For example, the number of pre-
vious successful responses in a test is an internal (person × covariate) covariate for a
model that is meant for the item responses, whereas gender is an external (and person)
covariate.

Fixed versus random effects: Fixed effects are unknown constants and do not vary as a
function of observational units, whereas random effects do vary across observational
units and are drawn from a distribution, which is commonly the normal distribution.

Mode of randomness: A random effect follows a distribution associated with the popula-
tion of the observational units one wants to consider. An effect can be random across
persons, across items, across persons within a person group, across items within an item
type, across groups of persons, across groups (types) of items, and even more compli-
cated cases can be constructed. It is clear from the nested elements in the list (e.g,
persons and person groups) that also multilevel models are a possibility.

Different combinations of choices from the four taxonomic dimensions lead to different IRT
models. For example, in the Rasch model, item indicators are used as item covariates with
a fixed effect, called item difficulties, while a constant 1–covariate is considered to have a
random effect across persons, called the ability.

Three model categories will be considered, based on the first dimension from the taxonomy:

1. Item covariate models, which rely primarily on item covariates;

2. Person covariate models, which rely in addition on person covariates;

3. Person-by-item covariate models, which rely also on person-by-item covariates.

The other three taxonomic dimensions refer to particular elements of the models within these
three categories. All models will be formulated as logistic models. If their normal-ogive
equivalent is wanted, the probit link should be used.

For the explanation of the covariates and the models, we use the quantitative variable rep-
resentation. The lmer code will mostly be given in terms of factors. For the distribution
of the random effects the program assumes a normal distribution with a mean of zero, and
random effects are seen as deviations from this mean and thus from the intercept (or zero if
the intercept is removed).

5. Item covariate models

Let us collect the item covariates in an item-by-covariate matrix, with dimensions I×(K+1),
and with k(k = 0, 1, . . . ,K) as an index for the item covariates. Because of the long form
format of all variables, the item covariate matrix needs to be repeated for each person, so that
a concatenated matrix X of size (P × I) × (K + 1) is obtained, with entries X(p,i)k, instead
of Xik as in (3). See the first three columns of Table 1 for the simple case of three persons
and two items.
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Item 1 Item 2 X0

Person 1 item 1 1 0 1
Person 1 item 2 0 1 1
Person 2 item 1 1 0 1
Person 2 item 2 0 1 1
Person 3 item 1 1 0 1
Person 3 item 2 0 1 1

Table 1: Item covariate matrix of the identity type and a 1-covariate.

The item covariates can be of different kinds:

1. The 1-covariate: X(p,i)0 = 1 for all values of i, as in the last column of Table 1;

2. The indicator covariate: X(p,i)k = 1 if k = i, 0 otherwise, as in the 2nd and 3rd column
of Table 1;

3. The item property covariate: X(p,i)k = 1 if item i has property k, 0 otherwise;

4. The item partition covariate: X(p,i)k = 1 if item i belongs to element k of a partition,
and X(p,i)k = 0 otherwise.

Each factor corresponds to one partition and generates as many partition covariates as there
are levels of the factor. The list of four item covariate types is not exhaustive. For example,
the covariates do not need to be binary, but can be integer-valued or real-valued instead.
However, for all item covariate models to be presented here, binary covariates are used, of the
four types just described.

In general, the covariate matrix X consists of two possibly overlapping submatrices, one for
covariates with a fixed effect and one for covariates with a random effect. Both submatrices
need to be of full rank in order for the model to be identified.

Depending on which of the three models to be presented in this section, either indicator
covariates, or property covariates, or partition covariates are used. The 1-covariate is used
when to define a general latent trait, such as the person ability.

5.1. The one-parameter logistic model (item indicator covariates)

The collection of item indicator covariates constitutes an identity matrix for each person. The
long-form item covariate matrix for the one-parameter logistic (1PL) model in (3) consists
of a vertical concatenation of P I × I identity matrices, as in the 2nd and 3rd column of
Table 1. The effect of the k = i-th indicator covariate is the easiness of item i (or difficulty if
a minus sign is used in X): βi. It is a fixed effect. In order to represent the overall individual
differences, a random effect based on the 1-covariate in X (last column of Table 1) is included.
It corresponds to the random intercept θp and is often called the ability in an IRT context.

The linear component for the 1PL is specified as -1 + item + (1 | id). The -1 (or 0)
avoids that the first item is used as the reference item and the basis for the intercept. The
term + item defines the fixed effects of the items, while the term (1 | id) defines a 1-vector
(1 | ...) with an effect that is random over persons (.. | id). If an effect is random, it
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is put within parenthesis followed by a vertical bar, and after the vertical bar, the units are
mentioned across which the effect is random.

In order to obtain the so-called person parameter estimates, the function ranef() with the
model name as an argument can be used. It returns conditional modes of the random effect,
taking into account the observed data of the person and the estimated parameter values,
including the variance of the unobserved normally distributed random effect. In an IRT
context, this type of estimation is called the maximum a posteriori method (MAP) for person
parameter estimation. The function mcmcsamp() with the object name of the estimation result
as an argument, can be used to obtain standard errors. It generates the posterior distribution
using Markov chain Monte Carlo. However, the function is presently being updated and is
therefore inactive (lme4 version 0.999375-32 of October 2009). The function ranef() is for
all kinds of random effects, and the function mcmcsamp() works for fixed effects as well as for
random effects.

5.2. The LLTM (item property covariates)

Item properties are covariates which are not just item indicators. Only binary properties are
considered here, but that is not a necessity. Again, the covariate matrix is repeated in a
vertical concatenation, yielding a (P × I)× (K + 1) long-form matrix X. An evident example
for the verbal aggression data is the item design. For example, for want versus do, X(p,i)k = 1
if item i is a want-item, and 0 if it is a do-item. The item property matrix is needed for the
linear logistic test model (LLTM) (Fischer 1973; Scheiblechner 1972) which explains the item
easiness (difficulty) in terms of item properties. Also for this model, a random person effect,
θp, is required, to define the latent trait:

ηpi = θp +
K∑
k=1

βkX(p,i)k, (4)

with θp as in (3), omitting the 1-covariate X(p,i)0, and βk as the fixed effect of item property
covariate X(p,i)k.

An interesting extension of this model is the LLTM plus error (Janssen et al. 2004; De Boeck
2008), which means that an error term is added in (4):

ηpi = θp +

K∑
k=1

βkX(p,i)k + εi, (5)

with εi ∼ N(0, σ2ε), just as in the regular regression model.

The addition of an error term to the model is very useful. The original LLTM is like a regres-
sion model that explains all variance, and it is therefore almost always rejected. The error
terms allows for an imperfect prediction. Doran et al. (2007) describe a similar application.

Note that the model in (5) implies homoscedasticity of the error variance. This assumption
can be relaxed. For example, the error variance may be different for the do items and the
want items. A larger error variance means that the item properties have less explanatory
power to explain the item difficulties.

The linear component for the regular LLTM and the LLTM with error, either homoscedastic
or heteroscedastic, can be specified as follows:
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� For the regular LLTM:
-1 + btype + mode + situ + (1 | id)

� For the LLTM plus homoscedastic error:
-1 + btype + mode + situ + (1 | id) + (1 | item)

� For the LLTM plus heteroscedastic error for want and do:
-1 + btype + mode + situ + (1 | id) + (-1 + mode | item)

In the following, the estimation of the LLTM plus heteroscedastic error for want and do is
illustrated. The full lmer code one can use is:

R> library("lme4")

R> lltmhe <- lmer(

+ r2 ~ -1 + btype + mode + situ + (1 | id) + (-1 + mode | item),

+ data = VerbAgg, family = binomial)

R> print(lltmhe)

Generalized linear mixed model fit by the Laplace approximation

Formula: r2 ~ -1 + btype + mode + situ + (1 | id) + (-1 + mode | item)

Data: VerbAgg

AIC BIC logLik deviance

8165 8227 -4073 8147

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 1.881943 1.37184

item modewant 0.044218 0.21028

modedo 0.212138 0.46058 0.000

Number of obs: 7584, groups: id, 316; item, 24

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

btypecurse 1.7202 0.1559 11.036 < 2e-16 ***

btypescold 0.6434 0.1530 4.206 2.60e-05 ***

btypeshout -0.1885 0.1527 -1.234 0.217

modedo -0.7117 0.1570 -4.533 5.81e-06 ***

situself -1.0579 0.1286 -8.225 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

btypcr btypsc btypsh modedo

btypescold 0.482

btypeshout 0.470 0.475

modedo -0.226 -0.220 -0.215

situself -0.431 -0.422 -0.406 0.008



12 IRT Estimation with lmer from lme4 in R

The output first shows the model formulation, and the name of the dataset. Next, Akaike’s
information criterion (AIC, Akaike 1974), Schwartz’s information criterion (BIC, Schwartz
1978), the loglikelihood, and the deviance are given. This information is followed by the result
for the random effects. The estimated variance and standard deviation of the person random
effect (latent trait) are 1.88 and 1.37, respectively (on line id (Intercept)), the estimates
for the unexplained item variance are 0.044 for the want items (line item modewant), and
0.212 for the do items (line item modedo).

In the next output section, the estimates of the fixed effects are given. The very first −1 in
the model specification has suppressed the overall intercept, so the fixed effect of the behavior
type is expressed as three means: 1.72 for cursing (line btypecurse), 0.64 for scolding (line
btypescold), and −0.19 for shouting (line btypeshout), which apply to the case when the
mode is “want” and the situation is “other to blame”. Obviously, cursing is more popular than
scolding, which is in turn more popular than shouting. The effects are deviations from the
probability of 0.50 on the logistic scale, and no direct comparison between the three behaviors
is made. This is different for the factors mode and situ. The effects on the lines modedo and
situself show the effects of the “do” mode in comparison with the “want” mode (−0.71) and
of the “self” situations as compared with the “other” situations (−1.06). Because the model is
a main effects model, the same fixed effects hold for the “do” mode and the “other to blame”
situations (no interaction). For each fixed effect, the standard error is also given along with
the corresponding z-value and the p-value under the null hypothesis, such that the effect can
be tested. The effects of “do” and “self” are both highly significant, which means that people
report to be less verbally aggressive in what they would actually do than in what they want
to do, and that they are also less verbally aggressive when they are self to be blamed in
comparison with situations in which other people are to be blamed.

An alternative formulation of the same model would be to remove the initial -1, so that the
cell which combines cursing with “want” and “other” situations becomes the reference basis.
This formulation leads to the same estimates except for a reparameterization of the btype

effect:

btypescold -1.0767 0.1572 -6.848 7.49e-12 ***

btypeshout -1.9087 0.1589 -12.016 < 2e-16 ***

The reparameterized effects are the differences of the previously estimated effects for btypescold
and btypeshout from the previous effect of btypecurse.

Going back to the original output, the final section shows the error covariances or correlations
for the estimates of the five effects. The output for the error correlations may be excessively
bulky when the number of fixed effects in the model is large (as in the case of the 1PL model).
To suppress it, print the output of the lmer by calling explicitly the print function like this:
print(lltmhe, cor = FALSE), given that lltmhe is the label that is assigned to the model
output.

5.3. The multidimensional 1PL model (item partition covariates)

The design factors can be used to define an item partition matrix, so that all levels of all
factors are each represented with a binary covariate. One factor defines one partition. If
the partitions are hierarchically ordered, a nested structure is obtained. If the partitions are
not hierarchically ordered, a crossed structure is obtained. For items, a nested structure is
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rather unusual, while a partially or completely crossed structure is rather common. For the
example data, the structure is completely crossed, with three design factors: Do vs. want,
self vs. other, and curse vs. scold vs. shout, yielding two partitions of two and one partition
of three. The item partition matrix is an interesting tool to define a multidimensional 1PL
(Rijmen and Briggs 2004). It plays the same role as a confirmatory factor loading matrix.

In order to include also the item parameters, the item partition matrix must be extended with
the item identity matrix, so that the corresponding fixed effects are contained in the model.
As a result, the X matrix is a long-form (P × I) ×K matrix, with K = I + K∗, and K∗ is
the number of binary item partition covariates, which equals the sum of partition elements
over the partitions, or, in other words, the total number of levels for all item design factors.
The model can be written as

ηpi = βi +

K∗∑
k∗=1

βk∗pX(p,i)k∗ , (6)

with βi as defined in (3), but omitting the item indicator covariate X(p,i)k=i; with βk∗p as
the random effect of item partition covariate X(p,i)k∗ ; with βp ∼ MVN(0,Σβ), and Σβ as the
covariance matrix of random effects.

Whether this model is identified depends on the structure of the K∗ covariates. If only one
partition is involved, the model is a between-item multidimensional model (as opposed to a
within-item multidimensional model, see Adams et al. (1997)), and it is identified indeed. If
more than one item partition is involved, the item design can be hierarchical or (partially)
crossed. We will not treat the hierarchical case here (nested between-item multidimensional
model), but the crossed case instead. A multidimensional model for a crossed item design is
not identified unless restrictions are imposed on the model. For example, the model is again
identified if the correlations between the dimensions referring to different partitions are fixed
to zero.

For a model with F fully crossed design factors (F partitions) (e.g., three in the example
data), and mf levels for factor f(f = 1, . . . , F ) (e.g., m1 = 3, m2 = 2, and m3 = 2 in the
example data), the following models can be formulated without identification problems:

Model 1:
∑F

f=1(mf −1) levels have a random effect (random slope) plus a random intercept
(a random intercept, and random effects for scold, shout, self, and do, but not for curse,
other, and want);

Model 2: mf=1 +
∑F

f=2(mf −1) levels have a random effect (random slope) (random effects
for curse, scold, shout, self, and do, but not for other and want);

Model 3:
∑F

f=1mf levels have a random effect (random slope), but with the constraint of
a zero correlation between the levels of the different design factors (random effects for
curse, scold, shout, other, self, want, and do, but with a zero correlation between the
random effects belonging to different factors, for example, between the curse and want
random effects);

Model 4: The
∏F
f=1mf cells of the design have a random effect (12 random effects, one per

cell in the 3× 2× 2 design).
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Gender Native

Person 1 item 1 1 1
Person 1 item 2 1 1
Person 2 item 1 0 0
Person 2 item 2 0 0
Person 3 item 1 0 1
Person 3 item 2 0 1

Table 2: Example of a person covariate matrix including a 1-covariate.

Note that the dimensionality is different:
∑F

f=1(mf − 1) + 1 in models 1 and 2,
∑F

f=1mf in

model 3, and
∏F
f=1mf in model 4. If in models 2 to 4 a random intercept is added, the model

is still estimated, but without any improvement of the goodness of fit, because the model is
not identified.

As an alternative, instead of item parameters, fixed item property effects can be included
in (6), in a similar way as in (4), but with the general latent trait replaced with a multidi-
mensional part as in (6). With this replacement, one can see the model as a second kind of
random effect extension of the original LLTM. It is called the random-weight LLTM (Rijmen
and De Boeck 2002).

The linear component for the four models can be specified as follows:

-1 + item + (1 + btype + mode + situ | id)

-1 + item + (-1 + btype + mode + situ | id)

-1 + item + (-1 + btype | id) + (-1 + mode | id) + (-1 + situ | id)

-1 + item + (btype:mode:situ | id)

For the random-weight LLTM, replace item with btype + mode + situ.

6. Person covariate models

Let us collect the person covariates in a person-by-covariate matrix, with dimensions P × J ,
with j(j = 1, . . . , J) as the subscript for person covariates. Because of the long form format,
the row of a person p needs to be repeated for all I responses per person, so that a (P ×I)×J
matrix Z is obtained, with entries Z(p,i)j . See the second and third column of Table 2,
assuming that person 1 is female and persons 2 and 3 are males, while persons 1 and 3 are
native speakers, and person 2 is not.

Again, three models will be presented to show the flexibility. As for the item covariate models,
the models are based on indicator covariates, property covariates, and partition covariates,
but now they are person covariates. The 1-covariate is redundant because it is equivalent
with the 1-covariate from X. Just as the item covariates, also the person covariates can be
integer-valued or real-valued.

6.1. The JML version of the 1PL model (person indicator covariates)

The collection of person indicator covariates constitutes an identity matrix. In the corre-
sponding long-form covariate matrix, Z(p,i)j = 1 if j = p, as in the second and third column
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of Table 1, and J = P . The effect of the p-th covariate is person parameter p, which is a fixed
effect. This covariate matrix is needed for the joint maximum likelihood (JML) version of the
1PL. The JML model also needs an item identity matrix X to define the item difficulties as
in (3):

ηpi =
J∑
j=1

θpZ(p,i)j +
K∑
k=1

βiX(p,i)k, (7)

with θp as a fixed effect of the person indicator covariate Z(p,i)j = 1 if p = j, and 0 otherwise.

The JML version of the 1PL model is the fixed person effect alternative for the model in (3),
which is the marginal maximum likelihood (MML) version. The labels JML and MML refer
to the estimation of the item parameters, either jointly with the person parameters (JML) or
integrating over the random person effect (MML). Apart from the estimation method, also the
models differ – the person effects are either fixed (JML) or random (MML), respectively. It is
known that the JML model does not lead to consistent estimates which need to be corrected
(Andersen 1980; Ghosh 1995). In fact, there are four possible 1PL models, one of which is
the MML model, and one other of which is the JML model. They are obtained by crossing
random vs. fixed for persons and items: Random persons and random items, random persons
and fixed items (MML), fixed persons and random items, and fixed persons and fixed items
(JML) (De Boeck 2008). The linear component for the four versions is formulated as follows:

� For random persons and random items 1 + (1 | id) + (1 | item)

� For random persons and fixed items -1 + item + (1 | id)

� For fixed persons and random items -1 + id + (1 | item)

� For fixed persons and fixed items -1 + id + item + (1 | item)

The id + item part in the latter defines the person and item effects as fixed. The term
(1 | item) is added to meet the lmer condition that the model contains a random effect (in
order to be a mixed model), but, given that there is already a fixed effect requested for the
items, it does not add to the model, other than making estimation possible.

6.2. The latent regression 1PL (person property covariates)

Person properties are covariates which are not just person indicators. Not only binary prop-
erties are considered here, but also an integer valued quantitative property. The rows of this
P × J matrix are repeated for all I items, so that a (P × I) × J long-form matrix Z is ob-
tained. Two person properties are available in the example dataset, the factor Gender, and
the integer-valued quantitative variable Anger.

The latent regression model (Zwinderman, 1991) is a model with fixed effects of the person
covariates, and it can be understood as a latent regression model for the θp from the 1PL
model in (3). It can be combined with item property effects, as in (4), or with item parameters,
so that the corresponding X matrix is also needed. The version with item parameters is as
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follows:

θp =
J∑
j=1

ζjZ(p,i)j + εp + βi, (8)

with ζj as the fixed effect of person property covariate Z(p,i)j ; with εp as the unexplained part
of θp, assuming that εp ∼ N(0, σ2ε), and βi as in (3).

The latent regression model is especially helpful if subpopulations are represented in the sam-
ple of persons, because the assumption of a global normal distribution for θp would not hold if
the subpopulations have different means. Note that the model in (8) implies homoscedasticity
of the unexplained variance. This assumption can be relaxed using random effects within the
levels of the factor allowing for heteroscedasticity.

The linear component can be formulated as follows:

-1 + item + Anger + Gender + (1 | id),

and with heteroscedasticity depending on gender:

-1 + item + Anger + Gender + (-1 + Gender | id)

When the model is multidimensional, and the effect of a person covariate is assumed to be
same for all dimensions, then a simple fixed effect must be included in the model, in the
same way as shown for Anger and Gender. If the effect is assumed to be dimension specific
or different depending on the dimension, then the linear component should contain a fixed
interaction effect of the person covariate and the item covariate that defines the dimension in
question.

The linear component for a model with a differential effect of gender on the want-dimension
and the do-dimension can be formulated as follows:

-1 + btype + mode + situ + Gender:mode + Gender + (-1 + mode | id)

Note that the model cannot have at the same time item parameters and an interaction between
Gender and mode.

6.3. Multilevel models (person partition covariates)

Let us denote the elements of person partitions as person groups. In total there are as many
person partition covariates as there are person groups. The structure of the partitions can be
nested or (partly or fully) crossed. It is common to use the term multilevel for nested person
partitions. For persons, the nested structure is the more common one, but Raudenbush (1993)
describes also crossed person groups. Like for all person covariate matrices, the rows must be
repeated for all I items in order to obtain the long form. There is only one person partition in
the example dataset, with only two groups which are also fixed (men and women). Often, data
do have a structure which lends itself to a multilevel analysis, for example, for educational
data the levels are persons, classes and/or schools, and possibly there is also a higher level
such as states.
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Cov. 1 Cov. 2 Cov. 3

Person 1 item 1 1 1 0
Person 1 item 2 1 0 0
Person 2 item 1 0 0 0
Person 2 item 2 1 0 1
Person 3 item 1 1 0 1
Person 3 item 2 0 1 1

Table 3: Example of a person-by-item covariate.

A simple multilevel version of the 1PL is the following:

ηpi(g) = θp + βi + θgX(p,i)j=0, (9)

with ηpi(g) as the logit for item i and person p belonging to group g; with θp and βi as in (3);
with θg as a random group effect, θg ∼ N(0, σ2g); and X(p,i)j=0 = 1 for all p and i.

The simple multilevel model in (9) can be extended, among others, with components from
the previous models. Another extension is that a third level is added, beyond the persons
(first level) and the first-order person groups (second level).

Suppose there were person groups defined in the example data, then the linear component
for the multilevel model can be formulated as follows:

-1 + item + (1 | id) + (1 | group)

with group as the label for the group factor.

Heteroscedasticity can be included in the model in the same way as for other models. The
use of lmer for the multilevel 1PL model is described in a more elaborated way by Doran
et al. (2007), including random effects for items.

7. Person-by-item covariates

Let us collect the person-by-item covariates in a long-form person-by-covariate matrix W
with dimensions (P × I) × H, with h(h = 1, . . . ,H) as an index for the person-by-item
covariates. The covariates now refer to the pairs of persons and items (p, i). An example of
a person-by-item covariate matrix with three covariates is given in Table 3.

Among the three kinds of covariates (indicators, properties, partition subsets), we will con-
centrate on property covariates. Indicator covariates do not make sense, because one would
need an indicator per response. The partition covariates do make sense, for example, to define
a different dimension depending on the person-by-item block, but they would lead us too far.
Here, three models with property covariates will be presented. Because the external versus
internal dimension of the taxonomy becomes meaningful for person-by-item covariates, both
types will be illustrated. One model has external covariates, and two models have internal
covariates – one model with binary covariates, and another with an integer-valued covariate.
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7.1. DIF models (external person-by-item property covariates)

Differential item functioning (DIF) means that for the item in question the response proba-
bilities of persons with the same ability differ depending on the group the persons belong to.
Items showing DIF are a problem for measurement equivalence and may lead to bias in the
measurement of a latent trait (Millsap and Everson 1993). Holland and Wainer (1993) give
an overview of the topic.

Commonly, DIF is studied in a focal group in comparison with a reference group. Therefore,
a DIF model requires a Z matrix. Furthermore, it requires also the X matrix of the regular
1PL model. The W matrix of a DIF model consists of covariates which are the product of two
other covariates: The focal group covariate Z(p,i)focal and either an item indicator covariate
X(p,i)k=i (item specific DIF) or an item property covariate X(p,i)k (item subset DIF). For item
specific DIF, a pair (p, i) has a value of 1 on covariate h if person p belongs to the focal
group and item i is an hypothesized DIF item. The fixed effect of this covariate is the DIF
parameter of item i. It refers to the deviance of the item i easiness (difficulty) in the focal
group from its easiness (difficulty) in the reference group. For item subset DIF, a pair (p, i)
has a value of 1 on covariate h if person p belongs to the focal group and item i belongs to the
subset in question (has the corresponding property), and a value if 0 otherwise. Both types
of DIF can be combined in one model.

A DIF model can be formulated as follows:

ηpi = θp + βi + ζfocalZ(p,i)focal +

H∑
h=1

ωhW(p,i)h, (10)

with θp and βi as in (3), with ζfocal as the global effect of the focal group in comparison with
the reference group; with Z(p,i),focal = 1 for the focal group, and 0 for the reference group;
with W(p,i)h as the person-by-item covariate h, defined in such a way that W(p,i)h = 1 if both
Z(p,i),focal = 1 and either X(p,i)k=i = 1 (item specific DIF), or X(p,i)k = 1 (item subset DIF),
and W(p,i)h = 0 otherwise; and ωh as the corresponding DIF parameter.

Notice that the dummy coding of the DIF covariate affects the group effect and the corre-
sponding fixed item or covariate effect. Alternatives are contrast coding and effect coding.

Using item specific DIF modeling, one can test items one by one, and compare the likelihood
of the one-item DIF models with the likelihood of the regular 1PL model, based on a likelihood
ratio test. In a next stage the model can be reformulated with item subset DIF if several
items show approximately the same amount of DIF.

For example, in the verbal aggression dataset, the do-items referring to cursing and scolding,
eight items in total, seem to show about the same gender DIF, which can be captured with
one common DIF parameter (Meulders and Xie 2004). The DIF parameter is the fixed effect
of a person-by-item covariate which is the product of an item property covariate (the subset of
eight items) and the gender covariate. From the sign of the DIF effect, it must be concluded
that men (say they) curse and scold more easily than women, independent of their latent
verbal aggression trait. Using DIF modeling, one can also test items one by one, and compare
the likelihood of the one-item DIF models with the likelihood of the regular 1PL model, based
on a likelihood ratio test.

Note that only DIF of the uniform type is studied in this way and that the approach is
model based. Uniform DIF means that DIF does not depend on the value of the latent trait.
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The approach is model-based because an IRT model is used. Other methods exist to study
non-uniform DIF, and to study DIF without modeling (Millsap and Everson 1993). DIF is
commonly studied as a fixed effect, but if individual differences in DIF are expected, the
DIF can be defined as random by adding a subscript p to ω (Van den Noortgate and De
Boeck 2005) and defining a multivariate normal distribution for all random person effects
accordingly.

In order to estimate the model in (10), first a new covariate must be defined, which we call
dif, and which is not part of the example dataset. As an illustration, the covariate is defined
for item subset gender DIF of the eight items from the verbal aggression data:

R> dif <- with(VerbAgg,

+ factor(0 + (Gender == "F" & mode == "do" & btype != "shout")))

(note that Gender is coded with "F" for men). The linear component for the model can now
be formulated as follows:

-1 + item + dif + Gender + (1 | id)

More than one DIF covariate can be defined, also for individual items, depending on what
one wants to investigate.

For DIF which is random across persons, the following formulation can be used:

-1 + item + dif + Gender + (1+ dif | id)

In this way, a random intercept (for the latent trait) as well as a random DIF effect is obtained,
and the correlation between both is estimated.

7.2. Local dependency models (internal binary person-by-item covariates)

Local independence is a basic assumption of IRT models. However, local independence does
not always apply. One solution is to increase the dimensionality of the model but this is
sometimes an overkill for this kind of problem. In such a case, or if dependency between
certain items is the topic of interest, the model may be extended with a local item dependency
(LID) component based on an internal item covariate (Meulders and Xie 2004).

A LID model can be formulated making use of a matrix W that is constructed as follows.
First, define an I × I dependency matrix D, so that Dii′ = 1 if the response to item i′ is
expected to depend on the response to item i, and Dii′ = 0 otherwise. Second, multiply Y
(the P × I data matrix) with D. Finally, transform the wide form of the product YD to its
long form. The result is one person-by-item covariate w(h=1) for the case all dependencies
contained in D have the same effect. If they are not expected to have the same effect, then
D needs to be decomposed into more elementary matrices Dh, one per LID parameter ωh,
so that D=

∑H
h=1 Dh. The corresponding long form is the (P × I)×H matrix W, with one

column per dependency effect.

The resulting model is a recursive dependency model and differs from non-recursive variants
as described by Kelderman (1984) and Wilson and Adams (1995). See (Tuerlinckx et al. 2004)
for a discussion of the two types. The model is as follows:

ηpi = θp + βi +

H∑
h=1

ωhW(p,i)h, (11)
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with θp and βi as in (3), with W(p,i)h as the value of the item dependency covariate h, and ωh
as the corresponding LID parameter.

As explained by Hoskens and De Boeck (1997), the dependency may depend on the person.
If that is the case, the LID effect should be defined as a random effect, adding a subscript p:
ωhp and defining a multivariate normal distribution for all random person effects accordingly.

In order to estimate the model in (11), first, a new covariate must be defined, which we call
dep, and which is not part of the dataset. As an illustration, the covariate is defined for the
dependency of do responses on want responses, assuming that the effect is the same for all 12
pairs:

R> dep <- with(VerbAgg, factor((mode == "do") * (r2[mode == "want"] == "Y")))

The linear component for the model can now be formulated as follows:

-1 + item + dep + (1 | id)

In order to include individual differences in the dependency, the formulation is as follows:

-1 + item + dep + (1 + dep | id)

More than one such covariate can be defined, also for individual pairs of items, depending on
the dependency one wants to investigate.

7.3. Dynamic 1PL model (internal integer-valued person-by-item covariates)

An example of an internal integer-valued covariate is the person’s progressive sum of correct
responses preceding the item in question. For example, for a person with a response pattern
for six items 011101, the corresponding covariate values for the six items are 001233. The
covariate values clearly depend on the person and on the item. The effect of the progressive
sum covariate is a learning effect induced by the amount of previous successes. As one can
see, the covariate is of an internal nature because it is based on the responses to be modeled.

The dynamic Rasch model, as formulated by Verhelst and Glas (1993), makes use of this
covariate:

ηpi = θp + βi + ωsumW(p,i)sum, (12)

with θp and βi as in (3), and W(p,i)sum as the progressive sum, and ωsum as its fixed effect.

If one wants the model to include individual differences in learning, as has been suggested by
Verguts and De Boeck (2000), the learning effect should be defined as a random effect, adding
a subscript p : ωsum,p and defining a multivariate normal distribution for all random person
effects accordingly.

The learning model does not make much sense for the example dataset, but for illustrative
reasons, we will nevertheless use this dataset. In order to estimate the model in (12), first a
new covariate must be defined, which we shall call prosum, and which refers to the number
of previous 1-responses. This involves some R syntax that we leave unexplained:

R> long <- data.frame(id = VerbAgg$id, item = VerbAgg$item, r2 = VerbAgg$r2)

R> wide <- reshape(long, timevar = "item", idvar = "id",

+ dir = "wide")[, -1] == "Y"

R> prosum <- as.vector(t(apply(wide, 1, cumsum)))
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The linear component for the dynamic 1PL model can now be formulated as follows:

-1 + item + prosum + (1 | id)

To include individual differences in learning, the formulation is as follows:

-1 + item + prosum + (1+ prosum | id)

8. Model comparison and testing

A familiar method to compare two models is the likelihood ratio (LR) test. The test requires
that the compared models are nested, which means that one or more parameters in a more
general model (M1) are constrained, most often to zero, in the more restricted model (M0).
It is well-known that asymptotically −2 ln(L0/L1) ∼ χ2(df), with df equal to the difference
in the number of free parameters, and with L0 and L1 as the likelihood of M0 and M1,
respectively. For two models which differ only in a single effect, df = 1.

In the present context, there are two problems with the LR test, a major one and a minor
one. The first and major problem is that when the null hypothesis implies a zero variance,
there cannot be a random fluctuation on both sides of the hypothesized value. Zero variance
is a boundary value in the parameter space. As a consequence, the regular LR statistic with a
χ2-distribution does no longer apply. Stram and Lee (1994, 1995) have shown that comparing
a model, M1, with r+ 1 random effects, and a model M0, with r random effects, the resulting
LR statistic under the null hypothesis follows a mixture of χ2(r) and χ2(r+ 1) with a mixing
probability of 1

2 . Further studies can be found in Giampaoli and Singer (2009) and Vu and
Zhou (1997). The recommendation of Baayen et al. (2008) to use the LR test for variances
as a conservative test (p-value too large) is in line with that result.

The score test and the Wald test are problematic for the same reason as the LR test, so
that also for those two one would have to rely on a mixture of chi-squares. Molenberghs
and Verbeke (2003) advise the LR test as the default because it is computationally easier.
Although computationally more laborious, based on their application, the score test seems
more robust than the other two. The computational burden can be overcome by using a
GAUSS program provided by the same authors.

The second and minor problem is that the estimation method is based on a Laplace approxi-
mation of the likelihood, as explained in Doran et al. (2007). Strictly speaking, it is not the
likelihood that is maximized, but an approximation of it, so that under the null hypothesis,
the LR statistic cannot assumed to be asymptotically χ2-distributed, but only approximately
so. Because the Laplace approximation is reasonably accurate, this is not a major problem.
From a small simulation study we made, comparing the Laplace approximation of the in-
tegrand with a Gauss-Hermite approximation of the integral, it turns out that the LR test
works well for fixed effects, but less so to test the null hypothesis of a zero variance (absence
of a random effect), using the mixture approach. It would require a much larger simulation
study to draw more definite conclusions.

The LR test for nested models can be performed by using the anova function. For example,
the earlier DIF model of (10) for gender DIF of do-items referring to cursing and scolding
(model denoted as m1) can be tested against a model without such DIF (model denoted as
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m0). The latter has one degree of freedom less than the former because all items in question
are assumed to show the same DIF effect. In the following the code as well as extracts of the
output are shown.

R> library("lme4")

R> m0 <- lmer(r2 ~ -1 + item + Gender + (1 | id), data = VerbAgg,

+ family = binomial)

R> dif <- with(VerbAgg,

+ factor(0 + (Gender == "F" & mode == "do" & btype != "shout")))

R> m1 <- lmer(r2 ~ -1 + item + dif + Gender + (1 | id), data = VerbAgg,

+ family = binomial)

Among the various output for model M1 there is an important line with the estimate for the
fixed effect associated with DIF:

dif1 1.00435 0.14375 6.987 2.81e-12***

For a formal test of M1 against M0 use function anova():

R> anova(m0, m1)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m0 26 8128.0 8308.3 -4038.0

m1 27 8081.2 8268.4 -4013.6 48.818 1 2.808e-12 ***

It is clear from the χ2(1)-statistic for the LR test that model M0 must be rejected.

Another familiar method to compare models is to use Akaike’s information criterion, AIC, and
Schwartz’ s information criterion, BIC. These criteria can also be used for non-nested models.
Because they are based on the loglikelihood, strictly speaking, similar problems stemming
from the approximate method apply. The lmer and the anova output shows the AIC and the
BIC. It is clear from a comparison of the models with and without DIF that the model with
DIF has a smaller AIC and BIC, and is therefore the preferred model.

The output of the lmer function shows also a z-value for the fixed parameters based on the
estimated standard error. This z-statistic can be used to test the effect. The z-test is asymp-
totically equivalent with the LR test, as is illustrated by the almost perfect correspondence
between the p-values of both tests for the above investigation of DIF. The z-test must not be
used for variances because the distribution of the z-statistic cannot be normal given that the
null hypothesis is located on the boundary of the parameter space.

Finally, one can inspect the posterior of the parameters using the mcmcsamp function and plot
the estimated posterior densities with densityplot(). Baayen et al. (2008) explain how to
proceed from there to derive Bayesian confidence intervals with an ancillary R function.

Note on some lmer options The manual offers an option for the number of nodes for the
estimation (nAGQ = x). When using the 1PL for the example data, the effect is negligible,
except for the likelihood, which decreases slightly with the number of nodes. The manual also
offers the option of restricted maximum likelihood as a default. For the example data, the
effect of REML = TRUE versus REML = FALSE is null.
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9. A comparison with other IRT packages in R

For the 1PL applied to the dataset, the results of the lmer function are compared with the six
programs described by Tuerlinckx et al. (2004) for the same dataset. The lmer variance is 1.90,
which is lower than the estimate obtained with the three Gauss-Hermite quadrature based
algorithms among the six (estimates of 1.98), but higher than PQL and PQL2 based estimates
from the other three (estimates of 1.70 and 1.87, respectively). It is known that the variance
estimates are lower for estimation methods based on an approximation of the integrand, such
as the Laplace approximation, compared with methods based on Gauss-Hermite integration.
However, the item parameter estimates are nearly identical. The absolute deviation is at most
0.01. Also the standard error estimates are highly similar.

These findings are confirmed with an analysis based on ltm (Rizopoulos 2006). The general
discrimination parameter estimate is 1.455, which corresponds to the 1.98 variance estimate
obtained with other Gauss-Hermite based programs.

The ltm package can be used to estimate the 1PL, 2PL, and 3PL for binary items and the
graded-response model for polytomous items with a logit link. Several other programs in R (R
Development Core Team 2010) are available for item response modeling. In contrast with the
lme4 package and its lmer function, ltm and the other packages are rather model-oriented,
and therefore of the first type as mentioned in the introduction. One way to categorize the R
programs for IRT further is as follows:

1. Two packages for Rasch families of models

� The eRm package (Mair and Hatzinger 2007) using conditional maximum likeli-
hood estimation for the Rasch model, the partial credit and rating scale models,
and the corresponding models with property covariates;

� The plRasch package (Anderson et al. 2007) using maximum likelihood and pseu-
dolikelihood estimation for loglinear formulations of the Rasch family of models for
response patterns of binary and polytomous items and a single or multiple latent
traits.

2. Two packages with Bayesian estimation for a family of models and one specific model

� The mlirt package (Fox 2007) for a Bayesian estimation of the 2P normal-ogive
model for binary and polytomous items, and multilevel extensions;

� The gpcm package (Johnson 2007) for a Bayesian estimation of the generalized
partial credit model.

3. Two programs from a political science perspective (IRT models are called ideal-point
models in political sciences). The packages are for one-dimensional and multidimen-
sional models, and a probit link is used:

� The MCMCpack package (Martin et al. 2011) for the Bayesian estimation of the
two-parameter one-dimensional and multidimensional normal-ogive models for bi-
nary responses. Also four-parameter variants can be estimated, which are seen as
robust models because the manifest response may deviate from the covert response,
by allowing for an upper and lower asymptote of the item response function;
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� The pscl package (Jackman 2010) with a Bayesian estimation of the two-parameter
one-dimensional and multidimensional normal-ogive models for binary items.

The packages from the above category 1 do not yield variance estimates. The packages from
the above categories 2 and 3 are based on MCMC and therefore may be expected to yield
variance estimates which are about the same as the Gauss-Hermite based programs. When
WinBUGS was used to estimate the 1PL for the example data, it was found indeed that the
variance estimate was very similar (Tuerlinckx et al. 2004).

10. Discussion and conclusion

The taxonomy of models and the large number of model variants presented here are meant
to illustrate the rich potential of the GLMM and explanatory perspective on item response
models and beyond. We have followed the tradition of identifying separate models but, within
the more general framework, they differ only in the covariates and effects that are included.

Given the variety of the item response models that can be estimated with the lmer function,
it is a highly flexible tool and not just for item response model estimation, but also as an alter-
native for analysis of variance with binary (and Gaussian) repeated observations as illustrated
in the special issue of Journal of Memory and Language (Forster and Masson 2008). Apart
from its flexibility, a major asset is the GLMM background, which is conceptually interesting
and facilitates the links with other domains of modeling and with the statistical findings in
those domains.

On the other hand, the lmer function cannot be used for popular IRT models such as the two-
parameter and three-parameter models, and the partial-credit and graded-response models.
The two former models are not GLMMs, and the latter two require multivariate logits or
probits. In comparison with other R (R Development Core Team 2010) programs, such as
ltm and eRm, lmer needs more runtime. For the Rasch model with fixed item effects and the
example dataset, the runtimes in seconds are 1.56 (ltm), 4.70 (eRm), and 26.73 (lmer) on an
Intel T4200 processor (2 GHz). However, in comparison with another general package such
as SAS PROC NLMIXED, the runtime of the lmer function is rather small.

When lmer possibilities for IRT are compared with those of SAS PROC NLMIXED, which is
based on a similar statistical background, several major differences can be noticed: SAS
PROC NLMIXED can estimate nonlinear mixed models, such as the two-parameter and three-
parameter models, and models for categorical data, such as the partial-credit and graded-
response models, latent variables can be made a function of one another (as in SEM), and
its estimation method relies on the Gauss-Hermite approximation of the integral. On the
other hand, SAS PROC NLMIXED cannot be used for multilevel models and for crossed random
effect modeling, it cannot handle more than a few dimensions, and is rather slow. In contrast,
because lmer is based on an approximation of the integrand, it is really fast and seems to
have no problems with higher dimensionalities, although further study is required to test its
qualities in that respect. The ideal would be to combine the qualities of the two kinds of
programs. However, it may be difficult to compete with a Bayesian package when it comes to
flexibility. It is interesting that both Baayen et al. (2008) and Doran et al. (2007) recommend
the Bayesian approach with the mcmcsamp function to inspect the posterior for a statistical
evaluation of the effects.

In sum, lmer is a highly interesting tool added to the toolkit of item response modeling.
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We have highlighted some of its potentialities, but more is possible. One example is random
item models, with random item variables linked to subsets of persons, just as random person
variables (latent person dimensions) are linked to subsets of items (De Boeck 2008).
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